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Abstract--The asymmetr ic  a r rangement  of deformed layering around rigid objects in shear  zones is among  the 
most  reliable criteria for inferring shear  sense in rock. A mathemat ical  model which s imulates  shear  deformat ion 
of a ductile medium containing a rigid inclusion gives insight into the genesis of this type of shear  sense indicator. 
The model ,  which is based on the velocity field solution for viscous flow around a sphere ,  demons t ra tes  that many 
common  str tuctures can arise in a mechanically passive matrix. As the model s imulates increasing shear  strain, 
s t ructures in the matrix pass through distinct evolutionary stages. Similar results have been obtained in 
exper imental  models ,  suggest ing that it may be possible to read shear  strain magni tude  from the geomet~ '  of 
deformed layering near  clasts and porphyroclasts  in sheared rocks. 

INTRODUCTION 

STRUCTURES observed around clasts and porphyroclasts 
in sheared rocks record interaction between the rela- 
tively rigid objects and ductile matrix during non-coaxial 
deformation. Previous theoretical studies of object- 
matrix interaction have focused on the o b j e c t -  either 
its motion (e.g. Ghosh & Ramberg 1976, Freeman 1985, 
Passchier 1987) or its change in shape (e.g. Gay 1968, 
Passchier & Simpson 1986) during sustained shear. The 
purpose of this study, in contrast, was to consider pro- 
gressive deformation of the matrix enclosing the object. 

The two-dimensional mathematical model presented 
here demonstrates that folding of layering near rigid 
objects in shear zones may be a largely passive process. 
Inspired by shear-related structures in a laminated 
diamictite, the model is based on a modified form of the 
velocity field solution for flow of a very viscous, 
homogeneous fluid around a sphere. In this paper, I 
discuss the design and results of the analytical model and 
compare its mathematically-simulated structures with 
natural and experimental counterparts. 

MODEL DESIGN 

Motivation for the model 

The mesoscopic structural style of Upper Proterozoic 
diamictites in Wedel Jarlsberg Land, SW Spitsbergen, 
provided the stimulus for modeling object-matrix 
interaction during progressive shearing deformation. 
The matrix of the Kapp Lyell diamictites, which 
probably represents glaciomarine deposits (Waddams 
1983), consists of centimeter-scale varve-like laminae. 
These laminae are clearly sedimentary; they are 
commonly graded and may represent influxes of clastic 
material carried by density currents into a generally 

quiet basin. The layering is visible because the upward 
decrease in grain size within individual laminae causes 
color contrasts between the top and bottom of each one. 
Pebble- to boulder-sized clasts, possibly ice-rafted 
dropstones, punctuate the otherwise fine-grained rocks. 

Ductile thrusting during early Paleozoic ('Caledo- 
nian') tectonism caused overall layer-parallel shearing 
within the Proterozoic sequence of Wedel Jarlsberg 
Land (Bjornerud 1987). In thinly bedded cherty 
dolomites, a mylonitic foliation was developed parallel 
to bedding planes. Phyllitic layers in quartzite-argillite 
units acted as slip surfaces, accommodating large shear 
strains. In the Kapp Lyell diamictites, the geometry of 
deformation associated with the layer-parallel shear 
regime was strongly influenced by the clasts in the rocks. 

Where clasts are absent or relatively small (diameters 
less than laminae thickness), the diamictites are charac- 
terized by strongly smeared or streaked layers, but few 
folds occur in the varve-like laminae (Fig. la). Where 
clasts are large and numerous, in contrast, the sedi- 
mentary layering is highly convoluted (Fig. lb). In many 
cases, the convolutions in the layers are nucleated 
around clasts (Fig. 2). These apparently clast-induced 
folds resemble eddies downstream from obstacles in 
fluid flow. In the diamictites, the 'eddies' occur on both 
sides of clasts due to the shearing (rather than uni- 
directional) flow field, and the zones of disturbed layer- 
ing commonly persist for 50-100 cm on either side of the 
clasts which seem to trigger them. Although a 
superficially similar geometry could be produced by 
coaxial flattening and crenulation of the layering, other 
meso- and microstructural features in the Kapp Lyell 
diamictites--e.g, transposed layering (Fig. lb) and 
whorled pressure shadow fibers around pyrite crystals-- 
support the interpretation of clast-related folds in 
the rocks as structures produced by non-coaxial 
deformation. 

The eddy analogy for the diamictite structures must be 
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used with care because truly turbulent flow is precluded 
by the high viscosity (low Reynolds number Re) of 
deforming rock (Langlois 1964, Ghosh & Ramberg 
1976). But the more general concept of an asperity 
causing instability in steady flow is valid for high viscosity 
media (Hudleston 1976, Cobbold & Quinquis 1980). 
With this in mind, I set out to determine whether the 
'eddy' structures in the Spitsbergen diamictites could be 
mathematically replicated by allowing a passive, layered 
matrix to flow through a simple shear velocity field which 
was perturbed by the presence of a rigid inclusion. 

Components of  the model 

The model's computer algorithm consists of two parts. 
In the first, local velocity vectors are defined at equally- 
spaced points in a grid which represents a shear-direction 
cross-section through the rigid object and ductile matrix 
(Fig. 4). In the second part of the program, points in this 
grid are allowed to 'flow' through the velocity field by 
iterative recalculation of their positions at small time 
increments. The results discussed in this paper were 
derived by holding the velocity field constant throughout 
the iterative process. Future experimentation with time- 
dependent velocity fields may be worthwhile. 

The velocity field used in the model is the solution for 
low Reynolds number flow around a sphere, modified 
for simple shear (the necessary modifications are 
detailed below). The solution is based on the assump- 
tions that the fluid matrix is homogeneous and isotropic 
and has no finite yield strength (Turcotte & Schubert 
1982, p. 263). While these are, admittedly, restrictive 
assumptions which do not account for the mechanical 
non-uniformity inherent in a layered medium, this 
idealization of the system permits a purely kinematic 
analysis, obviating the need to assign absolute values for 
shear stress, strain rate and viscosity. (The viscosity is 
constrained only to the extent that Re '~ 1, so that 
inertial forces are negligible.) The model's generality is 
limited somewhat by use of the analytical velocity field 
solution, since it presupposes that the object in the fluid 
is spherical and undergoes no deformation. Many clasts 

in the diamictites not only had angular and non-equant 
original shapes, but also experienced deformation along 
with the enclosing matrix. Still, the simplified geometry 
of the model is reasonably accurate for the clasts around 
which the clearest 'eddies' occur and the results obtained 
for this geometry are useful and interesting. 

The equations which define the velocity field for plane 
flow of a high-viscosity fluid past a sphere are: 

u~ = U( -1  - a3/(2r 3) + 3a/2r) cos 0 (1) 

u o = U(1 - a 3 / ( 4 r  3 )  - 3a/4r) sin 0 (for r > a) (2) 

in which a is the sphere radius; r and 0 are polar 
co-ordinates centered on the sphere; u~ and Uo are radial 
and tangential velocity components, respectively; and U 
is the far-field unidirectional flow velocity in the 0 = 0 
direction (Turcotte & Schubert 1982, pp. 263-265). 

The boundary conditions which constrain this solution 
are: (1) that the fluid approach a uniform velocity as r 
approaches infinity; and (2) that there be no slip at the 
boundary between the object and the fluid. (Because the 
object is considered stationary and not rotating, this 
means that u~ = u~ = 0 on r = a.) The perturbation 
velocity field depends only on the size of the sphere and 
the scaled flow rate. 

To adapt the above velocity field for a shearing fluid, 
two changes are necessary. First, an ambient simple 
shear flow field must be substituted for the unidirectional 
far-field flow U. In the model's computer algorithm, 
velocity vectors are assigned sequentially to grid points 
by multiplying equations (1) and (2) by the vertical 
co-ordinate of each point so that the magnitude of the 
horizontal velocity component increases linearly with 
distance from the centerline. Second, in order to satisfy 
the no-slip boundary condition, the velocity of the edge 
of the sphere must equal the velocity of adjacent 
particles in the fluid. Because the sphere is assumed 
rigid, the no-slip condition means that the vorticity of 
the shear zone is partitioned into spin for points within 
the sphere (Lister & Williams 1983). The object will 
rotate at an angular velocity co equal to half the bulk 
shear rate $, (Jeffrey 1922, Freeman 1985). For shearing 
flow, therefore, velocity vectors must be assigned at 

, q . ~ - -  . q . , . - -  , . t . , , - -  , , t . , . , .-- ~ . . , , - -  .V. . , , - -  . ~ . , . _  . , t - ~ .  , . t ~ . , , . . ~ . . ~  . . t . _ .  , . ,m,__ . ~ . . . _  . t , . . _  ,q # _ _  
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Fig. 4. Two-dimensional velocity field for viscous shearing flow around a rigid inclusion of circular cross-section. 



F o l d i n g  o f  l a y e r i n g  n e a r  r igid o b j e c t s  in s h e a r  d e f o r m a t i o n  

Fig. 1. Size, shape and abundance of clasts in Kapp Lyell diamictites controlled development of folds during layer-parallel 
shear. (a) Diamictite layering (approximately horizontal) is streaked but not folded where clasts are small and scattered. 
(b) Layering is complexly folded where clasts are large and closely spaced. Subhorizontal foliation in photograph is plane 
of shear. Layering~ marked by fine dark bands at tops of 1-2 cm thick graded sequences, is generally at a large angle to shear 
surfaces Folding of layering near white dolomite clast records dextral sense of rotation (arrows). In both photographs 

outcrop face is nearly vertical. 

Fig. 2. White dolomite clast at center left (arrowed) locally disrupted simple shear flow field, causing layering to be folded 
in neighborhood of clast. Outcrop face is approximately vertical. Sense of shear is top to right. 
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Fig. 3. Kink-like zone apparently nucleated by large quartzite clast at lower left. Overall sense of shear is top to right. See 
text for discussion. 
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Fig. 5. Definitions of geometric variables m progressive simple shear. 
q; = angular shear strain; y = shear strain; ~.] = maximum principal 

finite strain. 

points inside the sphere, while the unidirectional flow 
solution prescribed velocities only outside the sphere. In 
the model's computer algorithm, the radial velocity ur is 
set at 0 and the tangential velocity u o at mr for all points 
where r ~< a, so that the sphere rotates about its center 
without deforming. 

Once the program calculates the velocity field for a 
particular grid size and sphere radius (entered as input 
variables), simulated deformation occurs as originally 
rectilinear points are displaced by amounts proportional 
to the average magnitude of nearby velocity vectors. In 
order for the mathematical deformation process to 
approximate continuous natural deformation, the 'time' 
intervals between recalculations of grid point positions 
must be small enough that particles are not displaced 
through more than one grid interval in a given deforma- 
tion increment. The bulk strain at any time is described 
by either the angular deflection ~p of an originally vertical 
line or by the tangent of this angle, 7 (Fig. 5). 

To represent finite deformation at specified intervals, 
the program generates two types of plots: (1) layering 
plots, in which points that lay on the same horizontal line 
before deformation are connected to show fold develop- 
ment; and (2) strain grid plots, which display the 
deformed shapes of originally square areas (Figs. 6, 7 
and 9). In the next section, I discuss the features of some 
of these plots and compare them with their natural and 
experimental analogs. 

MODEL RESULTS 

The layering and strain plots produced by the model 
show a distinct sequence of structures which occur at 
progressively higher shear strains. However, the actual 
shear strain value at which a given structure is first visible 
depends on the size of the rigid object relative to the 
spacing of the marker lines. As object radius increases 
relative to layer thickness, the shear strain required to 
produce a particular feature decreases. An object with a 
radius smaller than the layer spacing will cause little 
distortion of the layering at any finite shear strain. Thus, 
assigning a shear strain value to a given structure is 
meaningful only if an object/layering ratio is specified. 
In the following discussion, I present results for object 
radii between one and three times the layer thickness. 
All plots included as figures are for object radii twice the 
layer thickness. 

Evolution of folds and strain patterns in the matrix with 
increasing shear strain 

At even very low shear strain, layering plots generated 
by the model show asymmetric half-folds in the matrix 
close to the object (Fig. 6a). The folds are convex in the 
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Fig. 6. Model plots for low shear strain. Parts (a), (c) and (e) show deformation of layering at shear strains ), = 0.69, 1.03 
and 1.37. respectively; (b), (d) and (f) show corresponding distortion of originally rectilinear grid at same finite shear strains. 
Arrow in (a) points to asymmetric half-fold near object. As shear strain increases, amplitude of such folds grows, and 

thickness of limbs decreases. Dashed lines in (c) and (e) mark boundaries of flexed zones. 
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Fig. 7. Layering and grid plots for intermediate shear strain. Plots (a) and (b) were produced at y = 1.67; (c) and (d) at 
7 = 1.99; (e) and (f) at 7 = 2.72. Dashed lines mark band of thinned layering and maximum principal finite strain direction 

0-0. 

direction of the object's rotation, and they form as the 
rotating object pulls the adjacent matrix with it, a con- 
sequence of the no-slip condition at the object-matrix 
boundary (Ghosh & Ramberg 1976, Schoneveld 1977). 
As a further result of the no-slip constraint, marker 
spacing is decreased in the limbs of the folds (Fig. 6b). 
This reflects the decreasing importance of spin relative 
to shear-induced vorticity in the matrix away from the 
object. 

Folds and thinned layering are familiar features near 
clasts and porphyroclasts in natural shear zones, and the 
asymmetry of such features is one of the most useful 
criteria for inferring shear sense in deformed rock 
(Simpson & Schmid 1983). Mathematical simulation of 
these features by the simple kinematic fluid model 
indicates that they can develop without dynamic 
behavior by the layering. The folds simply reflect the 
constraint of no differential movement between object 
and matrix. 

As shear strain increases, the object continues to 
rotate. The half-folds in layers next to the object grow in 
amplitude, and the layer spacing in the fold limbs 
decreases further (Fig. 6c). At the same time, open folds 
become visible in layers away from the object, their 
amplitudes decreasing to zero at a radial distance of 
several diameters. The inflection points of these gentle 
folds define the boundaries of warped or flexed zones 
above and below the object (Figs. 6c & e). Within these 
zones, layer spacing is slightly increased (Figs. 6d & f). 
The flexure boundaries are slightly non-parallel, 
diverging away from the object, but the flexed zones as a 
whole are oriented in the direction of the deflected 
perpendicular (OP' in Fig. 5). 

This gentle flexure of the layering is an ephemeral 
feature in the evolution of the shear zone. It reflects the 

parallelism of velocity vectors with layering in the areas 
directly above and below the object at low shear strain. 
With continued shear, the flexed zones move into posi- 
tions where velocity vectors no longer coincide with 
layering. The layers within the zones become deformed 
and lose their approximate parallelism. The transitory 
nature of the simple flexed zones makes them potentially 
useful as indicators of strain magnitude in natural shear 
zones. For the idealized geometry of the model and an 
object radius twice the layer thickness, layers within the 
flexed zones remain subparallel only until the bulk shear 
strain 7' reaches about 2. For larger objects, layers within 
the zones deform at lower shear strains. 

Figure 3 shows a possible natural example of a clast- 
nucleated flexure zone in the Proterozoic diamictites of 
SW Spitsbergen. The geometry and mechanical 
behavior of this natural system, however, are clearly 
more complex than those of the model. The large 
quartzite clast seems to have rotated rigidly while smaller 
clasts have deformed plastically (several are themselves 
bent into the flexed zone). The shapes of the smaller 
clasts within the flexed zone also suggest that they 
underwent deformation before the zone developed, so 
the finite shear strain in this case may be higher than the 
geometry of the flexed zone would suggest. Smaller 
apparently clast-nucleated folds in the photograph indi- 
cate more advanced stages of shear. 

When the flexed zones have been translated out of 
their original positions above and below the object, the 
zones enter a part of the velocity field where there is a 
significant component of motion perpendicular to the 
shear zone boundaries, and the result is the development 
of small folds in the flexed layering (Figs. 7a & c). The 
asymmetry of these folds is consistent with the bulk 
sense of shear. 
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Fig. 9 Layering plots for high shear strain. In (a)),  = 4.32 and in (b) 
y = 5.92. 

Fig. 8. Deve lopment  of an isoclinal fold in a single layer as a leading 
particle is overr idden by trailing particles on downshear  side of object.  
Arrows represent  velocity vectors which govern movement  of particles 

in next time increment.  

Figure 8 traces the development of one such fold in a 
layer in the upper half of a dextral shear zone. The 
layering from the flexed region is tilted in the downshear 
direction as it moves to the right, out of its original 
position. The tilting occurs because the layer's leading 
particles encounter velocity vectors with relatively large 
components perpendicular to the shear direction (down- 
ward in Fig. 8), while the trailing particles meet vectors 
which are only slightly oblique to the shear direction 
(horizontal and toward the right). The differential 
vertical motion between leading and trailing particles 
progressively steepens the layering until a downward- 
moving leading particle is overridden by a trailing 
particle, forming a small flap. At the critical shear strain, 
small folds of this type form almost simultaneously in 
layers up to several radii away from the object (Fig. 7a & 
c). With increasing strain, new folds develop farther out 
in the matrix (Fig. 7e). 

It is instructive to consider not only the evolution of 
these folds but also the positions of individual particles 
withih them. Layers close to the rotating object are 
caught permanently in its vortex. Therefore, as deforma- 
tion progresses, new particles are dragged into the folds. 
Particles migrate through the hinge positions of the 
folds, and segments of the layers are first compressed 
then stretched - -  in effect unstrained - -  as they move 
into positions of extensional incremental strain, in the 

manner described by Ramsay et al. (1983). Such 
'unstraining' is less obvious two or more layers away 
from the object, where essentially the same material 
point occupies a given fold hinge from the time the fold 
develops through progressively higher states of shear 
strain. This probably reflects the fact that folds in the far 
field are translated into regions of nearly homogeneous 
simple shear deformation, and continued shear of the 
relatively tight folds serves only to magnify their 
amplitudes. 

At about the same time that the flap-folds develop in 
the matrix, a narrow band of closely-spaced layering 
becomes increasingly visible (Fig. 7c). This band is 
parallel to the maximum finite elongation (21) direction 
associated with the bulk shear strain. In the layer plots, 
the band bears a superficial resemblance to a shear band, 
but this is inconsistent with its orientation parallel to a 
principal strain axis. Rather, the band develops as the 
downshear boundaries of the early flexed zone are 
rotated and flattened. 

With continued shear, the features developed at lower 
shear strains are themselves passively deformed. In the 
near field, layers controlled by the no-slip condition 
continue to curl around the object. The limbs of these 
curling folds, already strongly attenuated, undergo 
further thinning and stretching. Away from the object, 
the amplitude of the tight flap-folds increases, while the 
enveloping surfaces of the folds rotate toward the shear 
zone boundaries. The band of closely-spaced layering, 
parallel to the fold packet, also rotates towards the shear 
plane (Fig. 9). The clast-nucleated structure shown in 
Fig. 2 appears to represent an advanced state of shear 
strain in which both the band of appressed layering and 
the fold envelope lie virtually parallel to the shear plane. 

Summary of  model results 

The following structures appear in sequence as the 
model simulates increasing shear strain: 

(1) asymmetric half-folds with thinned limbs, formed 
next to the object as a result of its spin vorticity and the 
no-slip condition between object and matrix; 
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(2) flexed zones of thickened layering immediately 
above and below the object, reflecting the temporary 
parallelism of velocity vectors and layering in those 
positions at low shear strain; 

(3) flap-folds, developed when adjacent particles 
undergo differential displacement perpendicular to the 
shear direction; 

(4) narrow bands of closely-spaced layering, oriented 
in the maximum principal strain direction and formed by 
rotation and flattening of the flexed-zone boundaries. 

Recognizing the sequential development of these 
features is a first step toward a set of criteria for 
estimating shear strain magnitude in natural shear zones. 

Comparison of computer-generated structures 
with experimental models 

Experimental simulations of ductile matrix-rigid 
object interaction during layer-parallel shear have been 
conducted recently by Passchier & Simpson (1986) and 
Van den Driessche & Brun (1987). In both studies, a 
passive silicone matrix was allowed to flow around a 
rigid object. Passchier & Simpson (1986), who were 
concerned mainly with the evolution of recrystallized 
tails around large crystals during shear, used rigid cylin- 
ders of progressively smaller diameter to simulate the 
development of a strain-softened mantle on a 
porphyroclast with increasing shear strain. Van den 
Driessche & Brun (1987) conducted a set of experiments 
for a rigid object of constant size with no recrystallized 
mantle, and these experiments correspond most closely 
to the mathematical model presented in this paper. 

In the scale models of Van den Driessche & Brun, the 
rigid object was rectangular in cross-section, with an 
aspect ratio of 2:1 and the smaller dimension equal to 
about twice the layer thickness. This shape was chosen 
as an approximation for a typical feldspar porphyroclast. 
Despite the difference in object shape, the 'rolling 
structures' produced in the physical models passed 
through the same evolutionary stages as the 
mathematically-simulated structures. And because the 
relative sizes of the objects in the experimental and 
computer models were comparable, so were the bulk 
shear strains at which the various structures appeared. 

Van den Driessche & Brun (1987) focused primarily 
on features generated at high shear strain and thus did 
not discuss in detail structures developed at the onset of 
shearing deformation. However, a sketch showing layer 
deformation at y = 1.2 (their fig. l la)  displays several 
characteristics of the low-), computer plots. Next to the 
object, there are small half-folds, convex in the rotation 
direction. Above and below the object, layering is flexed 
and slightly thickened. The flexed zone is relatively 
narrow, probably because the object was oriented with 
its long axis perpendicular to layering at the beginning of 
deformation. 

By a finite shear strain of ), = 3.8, tight folds and 
oblique bands of thinned layering have appeared in the 
experimental models (see fig. 11b of Van den Driessche 

& Brun 1987). As in the computer-generated plots, the 
bands are parallel to the maximum principal strain axis 
for the shear zone as a whole. Like the bands in the 
computer plots, they might be mistaken for shear bands. 
However, the shapes of strain markers imprinted on the 
silicone matrix show that the bands are not shear planes 
but passively amplified warps in the layering (Van den 
Driessche & Brun 1987). 

The tight folds formed at moderate shear strain in the 
physical models are significantly larger in amplitude 
than those in the corresponding computer plots. This 
probably reflects differences in the velocity field set up 
by the sphere in the computer model and the oblong, 
sharp-cornered object in the physical experiments. The 
symmetry of a sphere keeps the velocity field constant 
with respect to a fixed (Eulerian) co-ordinate system as 
the object rotates. For a less symmetric shape like a 
rectangle, however, the Eulerian velocity vectors are 
constantly changed as the object rotates and its unequal 
sides meet the shear flow at varying angles. It follows 
that the shapes and amplitudes of folds generated by the 
rotation of an inequant object will depend partly on the 
object's initial position. In addition, the corners of such 
an object may induce local velocity disturbances. These 
factors may contribute to the relatively large amplitudes 
of folds in the experimental models. 

With further increases in shear strain, structures in the 
scale models evolve in much the same way as their 
computer-simulated counterparts. Layering in the 
oblique bands becomes more attenuated, existing folds 
grow in amplitude, and new folds develop in layers 
progressively farther from the object (see figs. 9 and 11 
of Van den Driessche & Brun 1987). 

Based on their experimental observations, Van den 
Driessche & Brun suggested that the length of the fold 
packet (normalized for the object dimensions) is propor- 
tional to shear-strain magnitude. In the computer 
model, rising shear strain did cause a general increase in 
the extent of the folds, but an exact proportionality was 
difficult to establish. At the critical shear strain, in fact, 
folds appeared simultaneously in layers up to several 
diameters away from the sphere (Figs. 7a & c). This 
difference between the two models may be related to the 
fact that time and space are discretized in the mathemat- 
ical model but continuous in the physical model. 

A phenomenon common to both models is the local 
unstraining of areas near the object as material points 
migrate through the hinge zones of amplifying folds. As 
Van den Driessche & Brun (1987) point out, the strain 
ellipses on the silicone matrix of their model illustrate 
this deformation reversal. The relatively large amplitude 
of the folds in the physical model may enhance the effect. 

Aside from minor differences arising from model 
design, the physical and mathematical simulations 
of a rigid object in a ductile shear zone yield similar 
results. In each case, the shearing matrix induces the 
object to rotate, while the rotating object causes the 
passive matrix to deform. Distinct deformational fea- 
tures occur sequentially in the matrix as shear strain 
increases. 
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CONCLUSIONS AND REMAINING QUESTIONS 

An attempt to explain the morphology of folds near 
clasts in a layered diamictite has led to the following 
conclusions. 

(1) Shear deformation of a ductile material containing 
a rigid object is analogous to flow of a very viscous fluid 
around an obstruction. Structures observed close to 
rigid objects in both natural and experimental shear 
zones can be simulated mathematically by allowing a 
passive layered matrix to move through the analytically- 
derived velocity field for flow around a sphere. 

Although this velocity field remains constant with 
respect to a fixed (Eulerian) reference frame during 
deformation, the velocity field in the (Lagrangian) 
reference frame of the matrix particles is time- 
dependent, making the flow unsteady (Malvern 1969, 
pp. 138-145). Folds in the passive layering develop as a 
result of this flow unsteadiness in the manner described 
by Hudleston (1976). 

(2) The simple mathematical model for interaction 
between the ductile matrix and rigid object generates a 
characteristic succession of structures as shear strain 
increases. In order of appearance these include: (a) 
asymmetric half-folds next to the object; (b) warped or 
flexed zones above and below the object; (c) tight folds 
which amplify with increasing shear; and (d) bands of 
thinned layering which parallel the maximum principal 
stretch direction. A similar succession of structures has 
been observed in experimental models. The purely 
kinematic nature of the model presented here makes it 
applicable to a variety of rigid object-ductile matrix 
systems - -  not only to clasts in diamictites and 
porphyroclasts in mylonites, but also to phenocrysts in 
banded rhyolite flows (Vernon 1987) and cobbles incor- 
porated into flowing ice or unlithified layered sediments. 
Although variables other than finffe shear strain (e.g. 
object size and shape) influence the development of 
object-nucleated structures, mathematical simulation of 
their progressive evolution suggests their potential util- 
ity as indices of relative shear strain magnitude. 

Remaining questions 

Although the computer model presented in this paper 
gives insight into the genesis of shear-related structures 
around rigid objects, it raises many other questions 
about the development of these structures. 

First, the mechanical role of layering in natural shear 
zones must be better understood before shear strain can 
be read systematically from naturally occurring struc- 
tures. The very existence of layering in a rock precludes 
totally passive matrix behavior during deformation; the 
mineralogical contrasts which define the layers imply 
some contrast in dynamic properties. For that matter, 
these dynamic contrasts are probably responsible for 
setting up layer-parallel shear flow in the first place. So 
completely passive layer behavior seems unlikely in a 
shearing rock. 

Mechanically active layering may either damp or 

amplify the velocity perturbations induced by the 
presence of a rigid object in a ductile shearing matrix. In 
the case of the Spitsbergen diamictites, the persistence 
of 'eddy' structures tens of centimeters from nucleating 
clasts (Fig. 2) may reflect some dynamic amplification by 
the varve-like laminae. If the diamictites are glaciogenic, 
an original 'dropstone' fabric with layering deflected 
around the clasts might also have accentuated the flow 
perturbation due to the rigid clasts themselves. On the 
other hand, the fact that 'eddies" are not more common 
in sheared layered rocks suggests that development of 
the structures is sometimes inhibited by the strength of 
the matrix layering. Why damping occurs in some 
instances and amplification in others is a question for 
future study. 

Another potentially fruitful direction for analysis is 
consideration of the third dimension, since it seems 
unlikely that shearing flow would remain planar in the 
vicinity of an obscuring object. Decay of the velocity 
perturbation in the third dimension would probably give 
rise to sheath folds (Cobbold & Quinquis 1980). 
Localized fold trains without any obvious nucleating 
objects are common in sheared rocks and are often 
identified as 'shear bands', but some of these convolu- 
tions might be shear-perturbation features induced by 
objects which are not in the plane of observation. 
Finally, closely spaced clasts or porphyroclasts might set 
up three-dimensional flow disturbances with complex 
interference patterns, generating confusing structural 
geometries in which essentially coeval folds cross-cut 
each other. 
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